Limit Cycles of Piecewise Linear Differential Systems with Three Zones and No Symmetry
نویسندگان
چکیده
Some techniques for proving the existence and uniqueness of limit cycles for smooth differential systems, are extended to continuous piecewise– linear differential systems. Then we obtain new results on the existence and uniqueness of limit cycles for systems with three linearity zones and without symmetry. We also reprove existing results of systems with two linearity zones giving shorter and clearer proofs.
منابع مشابه
On the Existence and Uniqueness of Limit Cycles in Planar Piecewise Linear Systems without Symmetry
Some techniques to show the existence and uniqueness of limit cycles, typically stated for smooth vector fields, are extended to continuous piecewise-linear differential systems. New results are obtained for systems with three linearity zones without symmetry and having one equilibrium point in the central region. We also revisit the case of systems with only two linear zones giving shorter pro...
متن کاملThree Limit Cycles in Discontinuous Piecewise Linear Differential Systems with Two Zones
In this paper we study a planar piecewise linear differential system formed by two regions separated by a straight line so that one system has a real unstable focus and the other a virtual stable focus which coincides with the real one. This system was introduced by S.-M. Huan and X.-S. Yang in [8] who numerically showed that it can exhibit 3 limit cycles surrounding the real focus. This is the...
متن کاملBifurcation of Limit Cycles of a Class of Piecewise Linear Differential Systems inR4 with Three Zones
We study the bifurcation of limit cycles from periodic orbits of a four-dimensional systemwhen the perturbation is piecewise linear with two switching boundaries. Our main result shows that when the parameter is sufficiently small at most, six limit cycles can bifurcate from periodic orbits in a class of asymmetric piecewise linear perturbed systems, and, at most, three limit cycles can bifurca...
متن کاملArbitrary Number of Limit Cycles for Planar Discontinuous Piecewise Linear Differential Systems with Two Zones
For any given positive integer n we show the existence of a class of discontinuous piecewise linear differential systems with two zones in the plane having exactly n hyperbolic limit cycles. Moreover, all the points on the separation boundary between the two zones are of sewing type, except the origin which is the only equilibrium point.
متن کاملThree Nested Limit Cycles in Discontinuous Piecewise Linear Differential Systems with Two Zones
In this paper we study a planar piecewise linear differential system formed by two regions separated by a straight line so that one system has a real unstable focus and the other a virtual stable focus which coincides with the real one. This system was introduced in a very recent paper (On the number of limit cycles in general planar piecewise linear systems, Discrete and Continuous Dynamical S...
متن کامل